

Fast algorithm for the
Shortest Vector Problem

er

(joint with Aggarwal, Dadush, and
Stephens-Davidowitz)

Oded Regev
Courant Institute, NYU

• A lattice is a set of points

 L={a1v1+…+anvn| ai integers}

 for some linearly independent
vectors v1,…,vn in Rn

• We call v1,…,vn a basis of L

Lattices

v1 v2

0

2v1
v1+v2 2v2

2v2-v1

2v2-2v1

• SVP: Given a lattice, find the shortest vector

• Best known algorithm runs in time 2O(n)

[AjtaiKumarSivakumar01,…]

Shortest Vector Problem (SVP)

0

v2

v1

Basis is not Unique

0

v2

v1

v1’

v2’

6

• Geometric objects with rich mathematical structure

• Considerable mathematical interest, starting from
early work by Lagrange 1770, Gauss 1801, Hermite
1850, and Minkowski 1896.

History

7

• An efficient algorithm that outputs a “somewhat short”
vector in a lattice

• Applications include:
• Solving integer programs in a fixed dimension,

• Factoring polynomials over rationals,

• Finding integer relations:

• Attacking knapsack-based cryptosystems [LagariasOdlyzko’85] and
variants of RSA [Håstad’85, Coppersmith’01]

The LLL Algorithm
[LenstraLenstraLovàsz82]

5.709975946676696… =
?

4+35

8

Lattices and Cryptography
• Lattices can also be used to create cryptography

• This started with a breakthrough of Ajtai in 1996

• Cryptography based on lattices has many
advantages compared with ‘traditional’
cryptography like RSA:
– It has strong, mathematically proven, security

– It is resistant to quantum computers

– In some cases, it is much faster

– It can do more: fully homomorphic encryption!

Applications of Lattice-based Crypto
• Public Key Encryption [R05, KawachiTanakaXagawa07,

PeikertVaikuntanathanWaters08]

• CCA-Secure PKE [PeikertWaters08, Peikert09]

• Identity-Based Encryption [GentryPeikertVaikuntanathan08]

• Oblivious Transfer [PeikertVaikuntanathanWaters08]

• Circular-Secure Encryption [ApplebaumCashPeikertSahai09]

• Leakage Resilient Encryption [AkaviaGoldwasserVaikunathan09,
DodisGoldwasserKalaiPeikertVaikuntanathan10,
GoldwasserKalaiPeikertVaikuntanathan10]

• Hierarchical Identity-Based Encryption
[CashHofheinzKiltzPeikert09, AgrawalBonehBoyen09]

• Fully Homomorphic Encryption
[BrakerskiVaikuntanathan10+11,Gentry11,Brakerski12]

• Learning Theory [KlivansSherstov06]

• And more…

Progress on provable SVP algs
Time Space

[Kan86]

[AKS01]

[NV08, PS09,

MV10a]…

[MV10b] Det

This work

Discrete Gaussian Distribution

Discrete Gaussian Distribution

If we can obtain discrete Gaussian
samples for small enough s, we can

solve SVP

Obtaining discrete Gaussian samples

• It is easy to obtain samples for very large s [GPV08]
• Our goal: take samples of width s and output

samples with smaller width, say, s/2
• Then we can simply repeat

• Naïve attempt: given x output x/2
• Problem: x/2 is not in the lattice!

• Second naïve attempt: only take x in 2L, and then
output x/2
• Correct output distribution, but we keep only 2-n
of the samples

Obtaining discrete Gaussian samples

• A better attempt: partition the samples according
to their coset of 2L

• Then take two samples from a coset and output
their average
• Notice that if x,y are in the same coset of 2L,
then x+y is in 2L, and so (x+y)/2 is in L

• Intuitively, since x and y are Gaussian with s, then
x+y is Gaussian with 2·s, and (x+y)/2 is Gaussian
with s/2

• But is it distributed correctly?

Input Distribution

Output Distribution

Red=even
Yellow=odd
Orange=desired

Obtaining discrete Gaussian samples

• It turns out that by taking “even” with probability
p2

even and “odd” with probability p2
odd , we get

exactly the discrete Gaussian distribution

Even

Odd

Square Sampling

• More generally, we bucket the samples into 2n
buckets, based on their coset of 2L

• We then pick a bucket with probability
proportional to square of its probability, and then
output (x+y)/2 for two vectors in the bucket

• For this we use a “square sampling” procedure:
given samples from a distribution (p1,…,pN), output
samples from the distribution (p1

2,…,pN
2)/∑pi

2
• We do this using rejection sampling
• The loss rate is ∑pi

2/pmax

• Total loss is 2n/2 due to magic!

Summary

• In time 2n we are able to sample from the discrete
Gaussian distribution (of any radius)
• This implies a 2n time algorithm for SVP

• A close inspection of the algorithm shows that 2n/2

should be the right answer
• So far we are only able to achieve that above
smoothing
• This implies 2n/2 algorithm for O(1)-GapSVP
• Puzzle: given coin with unknown heads
probability p; output a coin with probability p

20

Thanks!

Questions?

