Faster algorithm for the Shortest Vector Problem

Oded Regev Courant Institute, NYU

(joint with Aggarwal, Dadush, and Stephens-Davidowitz)

Lattices

A lattice is a set of points

 $L=\{a_1v_1+...+a_nv_n|a_i \text{ integers}\}$

for some linearly independent vectors $v_1,...,v_n$ in \mathbb{R}^n

We call v₁,...,v_n a basis of L

Shortest Vector Problem (SVP)

- SVP: Given a lattice, find the shortest vector
- Best known algorithm runs in time 2^{O(n)}
 [AjtaiKumarSivakumarO1,...]

Basis is not Unique

History

- Geometric objects with rich mathematical structure
- Considerable mathematical interest, starting from early work by Lagrange 1770, Gauss 1801, Hermite 1850, and Minkowski 1896.

The LLL Algorithm

[LenstraLenstraLovàsz82]

- An efficient algorithm that outputs a "somewhat short" vector in a lattice
- Applications include:
 - Solving integer programs in a fixed dimension,
 - Factoring polynomials over rationals,
 - Finding integer relations:

$$5.709975946676696... = 4+3\sqrt{5}$$

 Attacking knapsack-based cryptosystems [LagariasOdlyzko'85] and variants of RSA [Håstad'85, Coppersmith'01]

Lattices and Cryptography

- Lattices can also be used to create cryptography
- This started with a breakthrough of Ajtai in 1996
- Cryptography based on lattices has many advantages compared with 'traditional' cryptography like RSA:

- It has strong, mathematically proven, security
- It is resistant to quantum computers
- In some cases, it is much faster
- It can do more: fully homomorphic encryption!

Applications of Lattice-based Crypto

- Public Key Encryption [RO5, KawachiTanakaXagawaO7, PeikertVaikuntanathanWatersO8]
- CCA-Secure PKE [PeikertWaters08, Peikert09]
- Identity-Based Encryption [GentryPeikertVaikuntanathan08]
- Oblivious Transfer [PeikertVaikuntanathanWaters08]
- Circular-Secure Encryption [ApplebaumCashPeikertSahai09]
- Leakage Resilient Encryption [AkaviaGoldwasserVaikunathan09, DodisGoldwasserKalaiPeikertVaikuntanathan10, GoldwasserKalaiPeikertVaikuntanathan10]
- Hierarchical Identity-Based Encryption
 [CashHofheinzKiltzPeikert09, AgrawalBonehBoyen09]
- Fully Homomorphic Encryption
 [BrakerskiVaikuntanathan10+11,Gentry11,Brakerski12]
- Learning Theory [KlivansSherstovO6]
- And more...

Progress on provable SVP algs

Time

[Kan86]

$$n^{O(n)}$$

[AKS01]

$$2^{O(n)}$$

[NV08, PS09, MV10a]...

$$2^{2.465n+o(n)}$$

[MV10b] Det

$$2^{2n+o(n)}$$

Discrete Gaussian Distribution

$$D_{\mathcal{L},s} := \Pr[\mathbf{y}] \propto e^{-\|\mathbf{y}\|^2/s^2}$$

Discrete Gaussian Distribution

$$D_{\mathcal{L},s} := \Pr[\mathbf{y}] \propto e^{-\|\mathbf{y}\|^2/s^2}$$

If we can obtain discrete Gaussian samples for small enough s, we can solve SVP

Obtaining discrete Gaussian samples

- It is easy to obtain samples for very large s [GPV08]
- Our goal: take samples of width s and output samples with smaller width, say, $s/\sqrt{2}$
 - Then we can simply repeat
- Naive attempt: given x output x/2
 - Problem: x/2 is not in the lattice!
- Second naive attempt: only take x in 2L, and then output x/2
 - Correct output distribution, but we keep only 2⁻ⁿ of the samples

Obtaining discrete Gaussian samples

- A better attempt: partition the samples according to their coset of 2L
- Then take two samples from a coset and output their average
 - Notice that if x,y are in the same coset of 2L, then x+y is in 2L, and so (x+y)/2 is in L
- Intuitively, since x and y are Gaussian with s, then x+y is Gaussian with $\sqrt{2}$ ·s, and (x+y)/2 is Gaussian with $s/\sqrt{2}$
- But is it distributed correctly?

Input Distribution

Output Distribution

Obtaining discrete Gaussian samples

 It turns out that by taking "even" with probability p²_{even} and "odd" with probability p²_{odd}, we get exactly the discrete Gaussian distribution

Square Sampling

- More generally, we bucket the samples into 2ⁿ buckets, based on their coset of 2L
- We then pick a bucket with probability proportional to square of its probability, and then output (x+y)/2 for two vectors in the bucket
- For this we use a "square sampling" procedure: given samples from a distribution $(p_1,...,p_N)$, output samples from the distribution $(p_1^2,...,p_N^2)/\Sigma p_i^2$
 - We do this using rejection sampling
 - The loss rate is $\Sigma p_i^2/p_{max}$
 - Total loss is 2^{n/2} due to magic!

Summary

- In time 2ⁿ we are able to sample from the discrete
 Gaussian distribution (of any radius)
 - This implies a 2ⁿ time algorithm for SVP
- A close inspection of the algorithm shows that 2^{n/2} should be the right answer
 - So far we are only able to achieve that above smoothing
 - This implies 2^{n/2} algorithm for O(1)-GapSVP
 - Puzzle: given coin with unknown heads
 probability p; output a coin with probability √p

Thanks!

Questions?